
The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

Virtual Pascal’s Triangles: The Ballot Problem and the
Method of Images

Chris McCarthy Johannes Familton
cmccarthy@bmcc.cuny.edu jfamilton@bmcc.cuny.edu

Department of Mathematics
Borough of Manhattan Community College, CUNY

New York, New York 10007
USA

Abstract

Bertrand’s ballot problem asks what is the probability that the winner in a two candidate
election will always be ahead in the vote count. In this paper we present a method for solving
this problem using virtual Pascal’s triangles, analogs of the virtual objects used in the method of
images in the theory of differential equations. We supply a short script, written in the language R,
which implements these methods and displays the results.

1 Introduction
Joseph Bertrand [Bertrand1887] in 1887 proposed and solved what is called the Ballot Problem.

Ballot Problem: An election is held to choose between Candidate A and Candidate B. Candidate
A receives “a” votes. Candidate B receives “b” votes, with a > b. As the votes are counted, what is
the probability that Candidate A will always have more votes than Candidate B?

Solution:
P (A always ahead of B) =

a− b
a+ b

There are many ways to prove this result. For four of them, see Mark Renault’s excellent 2007 paper,
“Four Proofs of the Ballot Problem”[Renault2007]. The standard method of proof is by lattice path
reflection.

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

2 Lattice Paths

2.1 Lattice Paths and the Ballot Problem
• Each permutation of ballots is represented by a 1-dimensional lattice path starting at x = 0.
x = how many votes Candidate A is leading by
= (number of votes for A) − (number of votes for B)

• A vote for candidate A is one step to right (+1).
A vote for candidate B is one step to left (−1).
The lattice path will terminate at a− b.

The lattice paths are more easily visualized in two dimensions, with the y direction being the number
of steps (i.e. votes counted).

The two dimensional lattice path starts at (0, 0) and terminates at (a− b, n).

• Clearly, there are
n!

(n− a)!a!
= C(n, a) = C(n, b) possible permutations of the ballots since

n = a+ b.

• Equivalently, there are C(n, a) = C(n, b) lattice paths of length n from 0 to a− b.

• If n = a+ b and x = a− b then (after a little algebra) a =
x+ n

2
and b =

n− x
2

.

19

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

• So there are

C

(
n,
n+ x

2

)
= C

(
n,
n− x
2

)
(1)

length n lattice paths from 0 to x provided n+x
2

is an integer between 0 and n. If not, there are
0 such paths.

• By translation invariance, there are

C

(
n,
n+ (x2 − x1)

2

)
= C

(
n,
n− (x2 − x1)

2

)
(2)

length n lattice paths from x1 to x2 provided n+(x2−x1)
2

is an integer between 0 and n. If not,
there are 0 such paths.

To solve the ballot problem we will count how many of the lattice paths from 0 to a−b are “good”,
meaning that on that path candidate A is always in the lead, i.e. x > 0. A path is “bad”, if at some
point in the count, the candidates are tied, i.e. if x = 0.

We start by assuming that the first vote counted was for Candidate A. This happens with proba-
bility

a

a+ b
. Then we find the probability that A stays ahead, assuming the first vote counted was for

A. This will be the ratio

|permutations of the n− 1 remaining ballots with A staying ahead|
|permutations of the n− 1 remaining ballots|

(3)

To find the denominator of (3) we count the number of paths of length n − 1 that start at x = 1 and
terminate at x = a− b. By Formula (2) there are a total of:

C

(
n− 1,

(n− 1) + (x2 − x1)
2

)
= C

(
n− 1,

(n− 1) + (a− b− 1)

2

)
= C (n− 1, a− 1)

paths of length n− 1 from x = 1 to x = a− b.

20

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

2.2 The Reflection Method
To find the numerator of (3) we will count the number of paths of length n− 1 that start at x = 1 and
terminate at x = a − b but never intersect x = 0. We will call such paths “good” paths. If the path
intersects x = 0, we will call it a “bad” path. To count the number of good paths, we will subtract the
number of bad paths from the total number of paths.

The reflection method counts the bad paths from x = 1 to x = a− b of length n−1 by noting that
these paths are in a one–one correspondence with the paths of length n − 1 that go from x = −1 to
x = a− b. As shown below, the bijection comes about by reflecting the part of the bad path up until
it first hits the y axis.

So there are a total of:

C

(
n− 1,

(n− 1) + (x2 − x1)
2

)
= C

(
n− 1,

(n− 1) + (a− b− (−1))
2

)
= C (n− 1, a)

bad paths of length n− 1 from x = 1 to x = a− b.

21

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

Combining all this we get:

P (A is always ahead) = P (first vote is for A) P (A is always ahead | first vote is for A)

=
a

a+ b

C(n− 1, a− 1)− C(n− 1, a)

C(n− 1, a− 1)

=
a− b
a+ b

.

3 Method of Images
The method of images is a technique to solve boundary value problems by the introduction of fictional,
virtual particles. The most well known problem solved by means of the method of images involves
Poisson’s equation in electrostatics.

3.1 Method of Images: Poisson’s Equation
In electrostatics the method of images is used, in certain situations, to quickly solve Poisson’s Equa-
tion1 ∇2φ =

ρ

ε
for the scalar electric potential φ. For us the relevant situation is a point charge located

at a fixed distance to the right of an infinite grounded conducting plate. See figure below. Grounded
means that the plate has a constant voltage2, i.e. x ∈ plate, then φ(x) = 0.

Solving Poisson’s Equation directly (i.e., finding φ) for the above setup would be difficult without
the use of the following trick known as the method of images. The trick is to replace the conducting
plate by a virtual charge of opposite sign located at the mirror image point of the original charge with
respect to the conducting plate. See figure below.

1In Poisson’s Equation ρ = ρ(x) = charge density as a function of x; ε = permittivity; the electric field E = −∇φ;
for a point charge φ = 1

4πε
Q
r where Q = charge and r = the distance from the point charge.

2Voltage is another name for the scalar electric potential.

22

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

The mathematical justification for the method of images comes from the Poisson Uniqueness
Theorem. Let U be a region in R3. If φ satisfies Poisson’s Equation∇2φ =

ρ

ε
on U then φ is uniquely

determined by its values on the boundary of U . See Griffiths [griffiths1998electrodynamics] for
more details.

3.2 Method of Images: the Diffusion Equation
The method of images has also been applied to solving the diffusion equation [crank1979mathematics],
[strauss1992partial]

uxx = kut, x ≥ 0, t ≥ 0

BC u(0, t) = 0, t ≥ 0

IC u(x, 0) = δ(x− y), for some y > 0

where here δ is the Dirac delta function. Physically, this is the diffusion problem for a semi-infinite
tube with the end at x = 0 open and the initial concentration of the diffusing substance all concen-
trated at the single point y. It is worth noting that the diffusion equation can be derived as the limit of
an unbiased random walk3 [varadhan1980lectures].

4 Method of Virtual Pascal’s Triangles
Background: We call our method of solving the ballot problem the “the method of virtual Pascal’s
triangles” in homage to the virtual charges from the method of images. We have not seen our method,
as presented here, presented elsewhere. However, the underlying ideas are present in the literature.

In a brief footnote on page 72 of Feller’s Introduction to Probability, Vol. I. (1968) [Feller1968],
Feller mentions that the reflection method is equivalent to the method of images. He notes that the
reflection principle is called the method of images when used in the theory of differential equations

3A random walk is a lattice path where the direction of each step is chosen stochastically; unbiased means a step to
the right is equally likely as a step to the left.

23

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

and states that this method is usually attributed to Lord Kelvin or James Clark Maxwell. Feller
does not elaborate further. Zeilberger (1980) [Zeilberger1980MR578062], in his elegant treatment
of partial difference equations, introduces a recurrence relationship, similar to the one we develop
below (our operator F), which he uses, along with generating functions, to solve a higher dimension
generalization of the ballot problem.

Path counting and virtual particles: We can think of the one dimensional lattice paths as being
traced out by particles that must move one unit to the right or one unit to the left at each step.

To count the number of paths that can reach a point we imagine the following. At each step we let
the particle duplicate itself, with one copy going one unit to the right and one copy going one unit to
the left. The number of paths reaching a point equals the number of particles found at the point.

We can imagine that the particles have signs or charges (+) or (-),

+-

+ +-
-

and that these can cancel each other when combined, yielding:

+-

24

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

The net number of particles at each x ∈ Z defines a function Z→ Z and so we let

S = {f : Z→ Z}
= set of all possible particle counts on the lattice Z.

The particles propagate and trace out their lattice paths according to Pascal’s rule. With that in
mind we define F : S → S by

F [f](x) = f(x− 1) + f(x+ 1).

F is just Pascal’s rule4 written as a linear operator on S. If f(x) counts how many paths of length
n− 1 will reach x, then F [f](x) will count how many paths of length n will reach x.

In the literature, F and its iterates are typically folded into a single recursive relation

φ(x, n) = φ(x− 1, n− 1) + φ(x+ 1, n− 1).

The relationship between F and φ is as follows. If we let φ(x, 0) = f(x) be the initial condition, then

φ(x, n) = F n[f](x), where F n = F ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
F iterated n times

.

We will make use of φ when we explain our R script or discuss boundary conditions.
The Kronecker delta function,

δ(x) =

{
1, if x = 0;
0, otherwise

represents the integer lattice with a single particle at x = 0. Applying F repeatedly to δ(x) yields
Pascal’s triangle, which by Formula (1) is:

F n[δ](x) =

{
C
(
n, n+x

2

)
, if n+x

2
is an integer between 0 and n;

0, otherwise.

Applying F repeatedly to the translated Kronecker delta function,

δx0(x) = δ(x− x0)

yields Pascal’s triangle translated, which by Formula (2) is:

F n[δx0](x) =

{
C
(
n, n+(x−x0)

2

)
, if n+(x−x0)

2
∈ {0, 1, . . . , n} ;

0, otherwise.
(4)

We proceed to solve the ballot problem as before, by assuming that the first vote counted is for A,
giving us the initial condition x = 1, as we are identifying x with A’s lead in the vote count. This

4F of course violates conservation of mass, i.e, each time F is applied the total number of particles in the system
doubles. If we wish to conserve mass, for example if f(x) represented the probability of reaching x via a lattice path, or
the concentration of a substance at x, we would use the relationship F [f](x) = pf(x−1)+ qf(x+1), with p = q = 1/2
or more generally p+ q = 1.

25

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

leaves n−1 votes to count. Hence to solve the ballot problem it suffices to count the number of length
n− 1 good paths from x = 1 to x = a− b, as a− b is the final vote tally.

To do this, we place a particle at x = 1, which in our formulation, is represented by δ(x − 1) =
δ1(x), and apply Pascal’s rule, meaning F , a total of n − 1 times to δ1. However, when a particle
reaches the boundary x = 0, i.e., when a particle’s journey starts to represent a bad path, the particle
(and its descendants) are no longer keeping track of a good path, and so it and they must eliminated
from our counting procedure.

We accomplish this by the method of images5. We place a virtual negative particle at x = −1,
which in our formulation is represented by −δ−1(x), and then we repeatedly apply F to (−δ−1 +
δ1)(x). The following figure shows the first few iterations, with the virtual Pascal’s triangle starting
at x = −1.

So, to get the number of good paths of length n − 1 from x = 1 to x ≥ 0 we apply F a total of
n− 1 times to −δ−1 + δ1. Using the linearity of F and Formula (4) we get:

F n−1[−δ−1 + δ1](x) = F n−1[δ1 − δ−1](x)

= F n−1[δ1](x)− F n−1[δ−1](x)

= C

(
n− 1,

(n− 1) + (x− 1)

2

)
− C

(
n− 1,

(n− 1) + (x−−1)
2

)
= C

(
n− 1,

n+ x− 2

2

)
− C

(
n− 1,

n+ x

2

)
. (5)

Note that Equation (5) implies F n−1[−δ−1 + δ1](0) = 0 since
n− 2

2
+
n

2
= n− 1, indicating that

the choice of (−δ−1 + δ1)(x) as the initial conditions, implies that

φ(x, n) = F n[−δ−1 + δ1](x)

5The method of images, whether being applied to differential equations or lattice path counting requires a unique
solution theorem. In the case of lattice path counting, it is clear, by construction, that if the boundary conditions are
satisfied that the resulting lattice path count, which is given by repeatedly applying F , will be unique. It is worth noting
that F is not 1 to 1 as kerF is generated by infinite sequences of the form . . .− 1, 0, 1, 0, . . .

26

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

will satisfy the boundary conditions, φ(0, n) = 0 and the initial conditions φ(x, 0) = δ(x) on the
domain of the original problem, Z≥0 × Z≥0, as well as the master equation (Pascal’s rule) φ(x, n) =
φ(x− 1, n− 1) + φ(x+ 1, n− 1). Hence, φ(x, n), which is defined on Z× Z≥0, when restricted to
the domain of the original problem, Z≥0 × Z≥0, is the solution of the original problem.

By Equation (5), the number of good paths of length n− 1 from x = 1 to x = a− b will be:

F n−1[−δ−1 + δ1](a− b) = C

(
n− 1,

n+ (a− b)− 2

2

)
− C

(
n− 1,

n+ (a− b)
2

)
= C

(
n− 1,

(a+ b) + (a− b)− 2

2

)
− C

(
n− 1,

(a+ b) + (a− b)
2

)
= C

(
n− 1,

2a− 2

2

)
− C

(
n− 1,

2a

2

)
= C (n− 1, a− 1)− C (n− 1, a) .

This is the same result as gotten by the reflection method. So, as before:

P (A is always ahead) = P (first vote is for A) P (A is always ahead | first vote is for A)

=
a

a+ b

C(n− 1, a− 1)− C(n− 1, a)

C(n− 1, a− 1)

=
a− b
a+ b

.

5 R script
The included R6 script [S1], explained below and reproduced in the Appendix, allows one to see the
result of applying F to an initial condition n times. The script “plots” φ(x, i) = F i[f](x) for specified
x and i = 0, 1, 2, . . . , n.

5.1 The Function Definitions
The first function, C, counts the number of lattice paths from x0 to x of length n. In other words, C
implements Formula (4), which is:

F n[δx0](x) =

{
C
(
n, n+(x−x0)

2

)
, if n+(x−x0)

2
∈ {0, 1, . . . , n} ;

0, otherwise.

The function C first checks if k =
n+ (x− x0)

2
is an integer between 0 and n. If it is, C applies R’s

built in binomial coefficient function, choose(n,k) =
n!

(n− k)!k!
. Otherwise C returns 0.

6R is an open source programming environment widely used for statistical computing and its graphics capabilities [R],
[Rcite].

27

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

C <- function(n,x0,x){
k = (n +(x-x0))/2;
out = 0;
if(any(k == 0:n)){

out = choose(n,k);
}
return(out)

}

The next function, F, is equivalent to applying Pascal’s rule n times to the initial conditions. The
initial conditions being two, same sized vectors x0, v0 with x0 giving the particles’ positions and v0
giving their values (or counts). If we express Pascal’s rule recursively as

φ(x, n) = φ(x− 1, n− 1) + φ(x+ 1, n− 1) x ∈ Z, n ∈ Z>0

φ(x0, 0) = v0

then F returns φ(x, n) vectorized with respect to x.

F <- function(n,x0,v0,x){
out = array(dim = c(1,length(x)));
for(j in 1:length(x)){

out[j] = 0;
for(k in 1:length(x0)){

out[j] = out[j] + v0[k]*C(n,x0[k],x[j])
}

}
return(out);

}

The next function, ArrayF, returns the (n + 1) × length(x) matrix whose i, j entry is φ(x[j], i) with
i = 1, 2, . . . , n and j = 0, 1, 2, . . . , length(x).

ArrayF<-function(n,x0,v0,x){
out = array(dim = c(n+1,length(x)));
for(i in 0:n){out[i+1,] = F(i,x0,v0,x);}
return(out)

}

The final function, PlotPascal, displays the non-zero members of ArrayF, as a plot, at the values given
in x.

PlotPascal <- function(n,x0,v0,x){
pathArray = ArrayF(n,x0,v0,x);
plot(NULL, xlim=c(min(x),max(x)),

ylim=c(0,n),
ylab="n", xlab="x");

28

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

grid(lwd = 2);
for(j in 1: length(x)){

for(i in 0: n){
if(pathArray[i+1,j] !=0){

text(x[j],i,paste(pathArray[i+1,j]));
};

};
};

}

5.2 Examples using the R script
The following three examples illustrate the use of the R script, with details given for Example 3.

Example 1 Find the first 12 rows of Pascal’s triangle. See Figure 1.

x0 = c(0); # Example 1. Pascal’s Triangle.
v0 = c(1);
n = 12; # First 12 rows
x = -n:n;
PlotPascal(n,x0,v0,x);

−10 −5 0 5 10

0
2

4
6

8
10

12

x

n

1

1

1

12

1

11

1

10

66

1

9

55

1

8

45

220

1

7

36

165

1

6

28

120

495

1

5

21

84

330

1

4

15

56

210

792

1

3

10

35

126

462

1

2

6

20

70

252

924

1

3

10

35

126

462

1

4

15

56

210

792

1

5

21

84

330

1

6

28

120

495

1

7

36

165

1

8

45

220

1

9

55

1

10

66

1

11

1

12

1

1

Figure 1: The first 12 rows of Pascal’s triangle plotted in R.

29

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

Example 2 Using the method of images and virtual Pascal’s triangles find the number of lattice paths
of lengths n = 0, 1, . . . , 12 from x0 = 1 to x > 0, which do not intersect x = 0. See Figure 2.

x0 = c(-1, 1); # Example 2. Using Virtual Pascal’s Triangle
v0 = c(-1, 1); # to count lattice paths.
n = 12;
x = (-n-1):(n+1);
PlotPascal(n,x0,v0,x);

−10 −5 0 5 10

0
2

4
6

8
10

12

x

n

−1

−1

−1

−11

−1

−10

−1

−9

−54

−1

−8

−44

−1

−7

−35

−154

−1

−6

−27

−110

−1

−5

−20

−75

−275

−1

−4

−14

−48

−165

−1

−3

−9

−28

−90

−297

−1

−2

−5

−14

−42

−132

−1

−1

−2

−5

−14

−42

−132

1

1

2

5

14

42

132

1

2

5

14

42

132

1

3

9

28

90

297

1

4

14

48

165

1

5

20

75

275

1

6

27

110

1

7

35

154

1

8

44

1

9

54

1

10

1

11

1

1

Figure 2: The number of good paths from x = 1 to x plotted in R. The virtual Pascal’s triangle starts
on the left, at x = −1.

Example 3 Ballot Problem. Suppose candidate A received a = 8 votes and candidate B received
b = 5 votes. Find the probability that candidate A is always ahead in the vote count.

We let x = how many votes A is ahead of B in the vote tally. At the end of the vote tally,
x = a− b = 8− 5 = 3. The probability that the first vote counted is for A is

a

a+ b
=

8

8 + 5
=

8

13
.

If we assume that the first ballot counted is for A, then x = 1 and of the remaining 12 ballots, 8−1 = 7
will be for A. The number of ways these 12 ballots can be permuted is the same as the number of
paths of length 12 that start at x = 1 and end at x = a − b = 3, which can be found by applying F

30

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

to the initial condition f(x) = δ(x− 1) = δ1(x) a total of n = 12 times. In the R script we represent
this initial condition f(x) by the pair of 1-vectors c(1), c(1), which tell R that at x = 1 (from the first
c(1)) that the value of f is 1 (from the second c(1)) and that otherwise f(x) = 0. There are

F 12[δ1](3) =

The F function from R script.︷ ︸︸ ︷
F (12, c(1), c(1)︸ ︷︷ ︸

δ1

, c(3)) = C(12, 8− 1) = 792

distinct ways to tally those ballots, see Figure 1, row 12. Of those 792 ways to tally the votes

F 12[−δ−1 + δ1](3) =

The F function from R script.︷ ︸︸ ︷
F (12, c(−1, 1), c(−1, 1)︸ ︷︷ ︸

−δ−1+δ1

, c(3)) = 297 (6)

of the ways have A always ahead, by the method of virtual Pascal’s triangles, see Figure 2, row 12. For
the second calculation (6), the initial condition f(x) = δ−1(x) + δ1(x). In the R script we represent
this initial condition f(x) by the pair of 2-vectors c(−1, 1), c(−1, 1), which tell R that f(−1) = −1
and f(1) = 1 and that otherwise f(x) = 0. Carrying out the calculations we arrive at:

Probability that candidate A is always ahead =
8

13
· 297
792

=
b− a
b+ a

=
3

13
= 0.2307692.

a = 8; b = 5; # Example 3. Ballot Problem.
paths = F(a+b-1,c(1),c(1),c(a-b))[1,1];
paths;
goodpaths = F(a+b-1,c(-1,1),c(-1,1),c(a-b))[1,1];
goodpaths;
paste(’Probability A always ahead of B = ’,
(a/(a+b))*(goodpaths/paths));
paste(’Check answer. (a-b)/(a+b) = ’, (a-b)/(a+b));

6 Conclusion
The method of images and virtual Pascal’s triangles leads to appealing visual representations of stan-
dard combinatorial methods. It also provides a connection between combinatorics and the method
of images from the boundary value problems of mathematical physics, especially certain problems
arising from the study of the diffusion or heat equation. Our R script, which displays the number of
lattice paths (both actual and virtual), is easily modifiable, and may be of interest to those studying
lattice paths, integer sequences, or discrete simulations of the diffusion process.

7 Acknowledgements
We thank the Editor-in-Chief Wei-Chi Yang and the two anonymous reviewers for their support; for
helping us to identify and correct our grammatical, typographic, and stylistic errors; and for suggest-
ing that we make our R script available as a download.

31

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

Software Packages
[R] The R software package can be downloaded (GNU open source) from the R Project for Statistical
Computing website https://www.r-project.org/.

Supplemental Electronic Materials
[S1] The R script discussed in this paper can be downloaded from the July 9, 2016 entry of the Math
& Simulations website https://mccarthymath.commons.gc.cuny.edu/papers/virtualpascal2017ejmt/.

32

https://www.r-project.org/
https://mccarthymath.commons.gc.cuny.edu/papers/virtualpascal2017ejmt/

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

Appendix: The R Script
#--
Function Definitions
#--
C counts the number of lattice paths from x0 to x of length n
C <- function(n,x0,x){

k = (n +(x-x0))/2;
out = 0;
if(any(k == 0:n)){

out = choose(n,k);
}
return(out)

}
#--
F applies Pascal’s rule n times to the vectors x0, v0
F <- function(n,x0,v0,x){

out = array(dim = c(1,length(x)));
for(j in 1:length(x)){

out[j] = 0;
for(k in 1:length(x0)){

out[j] = out[j] + v0[k]*C(n,x0[k],x[j])
}

}
return(out);

}
#--
Returns an array of F applied i = 0, 1, 2,..., n times
ArrayF<-function(n,x0,v0,x){

out = array(dim = c(n+1,length(x)));
for(i in 0:n){out[i+1,] = F(i,x0,v0,x);}
return(out)

}
#--
PlotPascal <- function(n,x0,v0,x){

pathArray = ArrayF(n,x0,v0,x);
plot(NULL, xlim=c(min(x),max(x)),

ylim=c(0,n),
ylab="n", xlab="x");

grid(lwd = 2);
for(j in 1: length(x)){

for(i in 0: n){
if(pathArray[i+1,j] !=0){

text(x[j],i,paste(pathArray[i+1,j]));

33

The Electronic Journal of Mathematics and Technology, Volume 11, Number 1, ISSN 1933-2823

};
};

};
}
#--
End Function Definitions
#--
x0 = c(0); # Example 1. Pascal’s Triangle.
v0 = c(1);
n = 12; # First 12 rows
x = -n:n;
PlotPascal(n,x0,v0,x);
#--
x0 = c(-1, 1); # Example 2. Using Virtual Pascal’s Triangle
v0 = c(-1, 1); # to count lattice paths.
n = 12;
x = (-n-1):(n+1);
PlotPascal(n,x0,v0,x);
#--
a = 8; b = 5; # Example 3. Ballot Problem.
paths = F(a+b-1,c(1),c(1),c(a-b))[1,1];
paths;
goodpaths = F(a+b-1,c(-1,1),c(-1,1),c(a-b))[1,1];
goodpaths;
paste(’Probability A always ahead of B = ’,
(a/(a+b))*(goodpaths/paths));
paste(’Check answer. (a-b)/(a+b) = ’, (a-b)/(a+b));
#--

34

	Introduction
	Lattice Paths
	Lattice Paths and the Ballot Problem
	The Reflection Method

	Method of Images
	Method of Images: Poisson's Equation
	Method of Images: the Diffusion Equation

	Method of Virtual Pascal's Triangles
	R script
	The Function Definitions
	Examples using the R script

	Conclusion
	Acknowledgements

